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Abstract
We obtain a closed form expression of the C(x, y) operator for the PT
symmetric Scarf I potential. It is also shown that the eigenfunctions form
a complete set.

In recent years non-Hermitian systems, in particular the PT symmetric ones [1] have been
studied widely. Many of these systems are characterized by the fact that they possess real
eigenvalues. However for non-Hermitian systems the concept of a scalar product is a non-
trivial one. In fact a straightforward PT symmetric generalization of the usual scalar product
for Hermitian systems produces a norm which alternates in sign i.e.,

〈ψm|ψn〉PT = (−1)nδmn. (1)

With a view to circumvent this difficulty an operator C(x, y) was introduced [2]. This operator
is defined as [2]

C(x, y) =
∞∑

n=0

ψn(x)ψn(y) (2)

where ψn(x) are eigenfunctions of the Hamiltonian H:

Hψn(x) = λnψn(x). (3)

However, it is not always easy to obtain a closed form expression of the C(x, y) operator and
often one has to construct it using various approximating techniques [3]. Our purpose here
is to obtain a closed form expression of the C(x, y) operator for the PT symmetric Scarf I
potential.

We consider the Scarf I potential defined by

V (x) =
(

α2 + β2

2
− 1

4

)
1

cos2 x
+

α2 − β2

2

sin x

cos2 x
, x ∈

[
−π

2
,
π

2

]
(4)
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where α and β are complex parameters such that β∗ = α and αR > 1
2 . In this case the (real)

eigenvalues and the corresponding eigenfunctions are given by [5]

En =
(

n +
α + β + 1

2

)2

(5)
ψn(x) = Dn(1 − sin x)

α
2 + 1

4 (1 + sin x)
α∗
2 + 1

4 P (α,α∗)
n (sin x), n = 0, 1, 2, . . . ,

where P (a,b)
n (x) denotes the Jacobi polynomial and Dn is a normalization constant given by

Dn = in

√
(2n + 2αR + 1)n!�(n + 2αR + 1)

22αR+1�(n + α + 1)�(n + α∗ + 1)
. (6)

Using the orthogonality properties of Jacobi polynomials [4] it can be shown [5] that the
wavefunctions in (5) satisfy the relation∫ π/2

−π/2
(PT ψm(x))ψn(x) dx = (−1)nδmn. (7)

We now turn to the evaluation of the C(x, y) operator. Using (5) we obtain from (2)

C(x, y) =
∏

z=x,y

(1 − sin z)
α
2 + 1

4 (1 + sin z)
α∗
2 + 1

4

×
∞∑

n=0

(−1)n(2n + 2αR + 1)n!�(n + 2αR + 1)

22αR+1�(n + α + 1)�(n + α∗ + 1)
P (α,α∗)

n (sin x)P (α,α∗)
n (sin y). (8)

To evaluate the summation in (8) we now use the result [6]
∞∑

n=0

n!
(2αR + 1)n

(α + 1)n(β + 1)n
(2n + 2αR + 1)P (α,α∗)

n (sin x)P (α,α∗)
n (sin y)tn

= (2αR + 1)(1 − t)

(1 + t)2αR+1
F4(a, b, c, d, U, V ) (9)

where

F4(a, b, c, d, U, V ) =
∞∑

r,s=0

(a)s(b)s

s!(d)s

(a + s)r (b + s)r

r!(c)r
UrV s

=
∞∑

s=0

(a)s(b)sV
s

s!(d)s
2F1(a + s, b + s, c, U) (10)

a = αR + 1, b = αR + 3/2, c = 1 + α, d = β + 1,
(11)

U = (1 − sin x)(1 − sin y)t

(1 + t)2
, V = (1 + sin x)(1 + sin y)t

(1 + t)2

and 2F1(a, b, c, z) is the standard hypergeometric function.
Now taking the limit t → −1, we obtain

F4(a, b, c, d, U, V ) = (−U)a
∞∑

s=0

�(c)�(1/2)

�(b + s)�(c − a − s)

(−V/U)s(a)s(b)s

s!(d)s
. (12)

Then using (12) we obtain from (9) and (10)

C(x, y) = N
[(1 + sin x)(1 + sin y)](α

∗/2+1/4)

[(1 − sin x)(1 − sin y)](α∗/2+3/4) 2F1(a, 1 − c + b, d, z),

(13)
z = (1 + sin x)(1 + sin y)

(1 − sin x)(1 − sin y)
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where N is a constant given by

N = 2�(αR + 1) sin(π(1 − c + a))�(1 − c + a)

π�(α∗ + 1)
. (14)

It may be noted that (13) is an exact result.

Completeness of the eigenfunctions

The completeness property is a very important feature of eigenfunctions. However, to the
best of our knowledge for PT symmetric systems this property has been verified numerically
[7]. Here we shall show analytically that the eigenfunctions (5) form a complete set. To do
this, we note that in a PT symmetric theory with unbroken PT symmetry the completeness
property can be expressed as [2, 3]

∞∑
n=0

(−1)nψn(x)ψn(y) = δ(x − y). (15)

To prove (15) we consider the result [8]
∞∑

n=0

n!�(a + b + 2n + 1)�(a + b + n + 1)

�(a + n + 1)�(b + n + 1)
P (a,b)

n (x)P (a,b)
n (y)

= (1 + x)−b/2(1 − x)−a/2(1 + y)−b/2(1 − y)−a/2δ(x − y) (16)

where −1 < x, y < 1, Re(a) > −1, Re(b) > −1. Now putting a = α, b = β in (16) and
using (5) we obtain

∞∑
n=0

(−1)nψn(x)ψn(y) = √
cos x cos y δ(sin x − sin y) = δ(x − y). (17)

Thus the eigenfunctions (5) form a complete set.
It is interesting to note that two important results can be derived using (16). First we

recall that in Hermitian systems, the operator C(x, y) is just the parity operator i.e., C(x, y) =
δ(x + y). So for α = α∗, (13) should reduce to this limit. Now using the properties of
hypergeometric functions it can be shown that for real α, β, C(x, y) = δ(x + y). The other
properties of the C operator namely, Cψn = (−1)nψn follow from the definition (2) and (1)
while C2 = 1 can be derived using the results (7) and (16).
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Corrigendum

Construction of the C operator for a PT symmetric model
Roychoudhury R and Roy P 2007 J. Phys. A: Math. Theor. 40 F617–620

Equation (9) should read as
∞∑

n=0

n!
(2αR + 1)n

(α + 1)n(β + 1)n
(2n + 2αR + 1)P (α,α∗)

n (sinx)P (α,α∗)
n (siny)tn = (2αR + 1)(1 − t)

(1 + t)2αR+2
F4(a, b, c, d, U, V )

Equation (13) should read as

C(x, y) = N
[(1 + sinx)(1 + siny)](α

∗/2+1/4)

[(1 − sinx)(1 − siny)](α∗/2+3/4) 2F1(a, 1 − c + a, d, z), z = (1 + sinx)(1 + siny)

(1 − sinx)(1 − siny)
.
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